Benzoquinone-Hydroquinone Couple for Flow Battery

نویسندگان

  • Saraf Nawar
  • Brian Huskinson
  • Michael Aziz
چکیده

At present, there is an ongoing search for approaches toward the storage of energy from intermittent renewable sources like wind and solar. Flow batteries have gained attention due to their potential viability for inexpensive storage of large amounts of energy. While the quinone/hydroquinone redox couple is a widely studied redox pair, its application in energy storage has not been widely explored. Because of its high reversibility, low toxicity, and low component costs, we propose the quinone/hydroquinone redox couple as a viable candidate for use in a grid-scale storage device. We have performed single-electrode tests on several quinone/hydroquinone redox couples, achieving current densities exceeding 500 mA/cm, which is acceptable for use in energy applications. We fabricated a full cell using para-benzoquinone at the positive electrode against a commercial fuel cell hydrogen electrode separated by a Nafion membrane. We evaluated its performance in galvanic mode, where it reached current densities as high as 150 mA/cm. The results from these studies indicate that the quinone/hydroquinone redox couple is a promising candidate for use in redox flow batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and ...

متن کامل

Novel Quinone-Based Couples for Flow Batteries

Flow batteries are of interest for low-cost grid-scale electrical energy storage in the face of rising electricity production from intermittent renewables like wind and solar. We report on investigations of redox couples based on the reversible protonation of small organic molecules called quinones. These molecules can be very inexpensive and may therefore offer a low cost per kWh of electrical...

متن کامل

Palladium Catalyzed Allylic C-H Alkylation: A Mechanistic Perspective

The atom-efficiency of one of the most widely used catalytic reactions for forging C-C bonds, the Tsuji-Trost reaction, is limited by the need of preoxidized reagents. This limitation can be overcome by utilization of the recently discovered palladiumcatalyzed C-H activation, the allylic C-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mech...

متن کامل

An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure.

Benzene-induced myelotoxicity can be reproduced by the coadministration of two principal metabolites, phenol and hydroquinone. Coadministration of phenol (75 mg/kg) and hydroquinone (25-75 mg/kg) twice daily to B6C3F1 mice for 12 days resulted in a significant loss in bone marrow cellularity in a manner exhibiting a dose-response. One explanation for this potentiation is that phenol stimulates ...

متن کامل

Palladium catalyzed allylic C-H alkylation: a mechanistic perspective.

The atom-efficiency of one of the most widely used catalytic reactions for forging C-C bonds, the Tsuji-Trost reaction, is limited by the need of preoxidized reagents. This limitation can be overcome by utilization of the recently discovered palladium-catalyzed C-H activation, the allylic C-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012